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ABSTRACT

Google and Bing have emerged as the diarchy that arbitrates what documents are seen by Web searchers, partic-
ularly those desiring English language documents. We seek to study how distinctive are the top results presented
to the users by the two search engines. A recent eye-tracking has shown that the web searchers decide whether
to look at a document primarily based on the snippet and secondarily on the title of the document on the web
search result page, and rarely based on the URL of the document. Given that the snippet and title generated by
different search engines for the same document are often syntactically different, we first develop tools appropriate
for conducting this study. Our empirical evaluation using these tools shows a surprising agreement in the seman-
tics of the results produced by the two engines for a wide variety of queries used in our study. Thus, this study
raises the open question whether it is feasible to design a search engine that would produce results distinct from
those produced by Google and Bing that the users will find helpful.
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1 Introduction

The World Wide Web is now widely recognized as the universal
information source. The fairness doctrine enunciated several
decades ago contends that citizens should have access to di-
verse perspectives Federal Communications Commission, 1949.
The normative impetus behind this doctrine is the idea that
exposure to different views is beneficial for citizens. Without
question, content representing diverse perspectives exist on the
Web almost on any topic However, this does not automatically
guarantee that audiences encounter them Stroud and Muddi-
man, 2012.

Search engines have become the dominant tool used to
access the web content Purcell et al., 2012. In the physical
world, one way people gain access to diverse perspectives is by
subscribing to different newspapers, listening to different radio
stations, tuning into different television channels, or manually
selecting different publications and books. We seek to study
whether users can garner different perspectives by obtaining
results for the same query from different search engines. For
this purpose, we study how distinctive are the web search re-
sults produced by Google and Bing - the two most popular
search engines of English language documents (Yahoo’s web
search is currently powered by Bing).

In addition to the information about the documents that
the search engine deems most relevant to the query (the so
called “organic results”), a search engine result page (SERP)
often contains a variety of other information. This may include
inter alia sponsored listings, images, videos, maps, definitions,
or suggested search refinements. We focus on comparing the
top-10 organic results on the first SERP because they are the

ones that get almost all of the clicks Enge et al., 2012. Users un-
satisfied with the top results frequently retype a query, instead
of looking at results at lower positions Guan and Cutrell, 2007.
An organic result normally includes the title of the document,
a snippet of the document, and URL of the full version.

A recent eye-tracking has shown that the web searchers
decide whether to look at a document primarily based on the
snippet and secondarily on the title of the document on the
web search result page, and rarely based on the URL of the
document Marcos and González-Caro, 2010. Given that the
snippet and title generated by different search engines for the
same document are often different, we first develop tools ap-
propriate for conducting this study. We then use these tools to
study the extent of agreement in the results produced by the
two engines for a wide variety of queries.

Contributions
In this work, our main contribution is quantifying how distinc-
tive are the organic search results produced by Google and Bing.
In order to achieve that, we also make the following technical
contributions:1

1 While designed to effectively analyze search engine results, our
tools have broader applicability. For instance, consider a set of ques-
tions, possibly coming from a Massive Open Online Course (MOOC)
exam; these questions can either be multiple choice or in free-text
form. In the setting of a MOOC, there will be potentially hundreds,
or thousands, of students responding to those questions. There are
also multiple exams, as well as multiple MOOCs on the same sub-
ject, offered by different providers. Using these tools, we are able to
quantify the similarity of students across different MOOCs, as well
as similarity of MOOCs in terms of how students respond to exam
questions (which could be an indicator of how well students learn
from a particular MOOC).
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Visualization and exploratory analysis: We introduce
TensorCompare, an exploratory tool for visualizing and an-
alyzing pairwise differences between search engines.
Quantitative comparison of search engines results: We
also introduce CrossLearnCompare, a tool that uses ma-
chine learning and quantifies the similarity of results between
two search engines by framing it as a prediction problem.

Paper Layout
The structure of the rest of the paper is as follows. We begin
by discussing related work in Section 2. We then describe the
new tools we designed for carrying out the comparative study
in Section 3. Section 4 presents the empirical evaluation. We
conclude with a discussion of the significance of the work and
future directions in Section 5.

2 Related Work

More than four decades ago, Lancaster and Fayen Lancaster
and Fayen, 1973 in 1973 listed six criteria for assessing the
performance of information retrieval systems: 1) Coverage, 2)
Recall, 3) Precision, 4) Response time, 5) User effort, and 6)
Form of output. Since the advent of search engines in early 90’s,
there are several reported studies that evaluated their perfor-
mance on one or more these criteria. See Chu and Rosenthal,
1996 and references therein for examples of some early studies.
See Lewandowski, 2012 for a recent compilation of various is-
sues and studies related to the evaluation of web search engines.
We will focus our discussion on prior works that studied the
overlap of results between different search engines, the thrust
of our paper.

An early overlap study is due to Ding and Marchionini,
who measured the result overlap between the then popular
three search engines: InfoSeek, Lycos, and OpenText. Five
queries were used to conduct searches with these services. They
observed a low level of result overlap among the services Ding
and Marchionini, 1996. Around the same time, Selberg and Et-
zioni found, in the context of their metacrawler work, that none
of Galaxy, Infoseek, Lycos, OpenText, Webcrawler and Yahoo
was able to return more then 45% of the references followed by
users. They also observed that each of the engines returned
mostly unique results Selberg and Etzioni, 1995. Also in 1996,
Gauch, Wang and Gomez found that a metasearch engine that
fused the results of Alta Vista, Excite, InfoSeek, Lycos, Open
Text, and WebCrawler provided the highest number of relevant
results Gauch and Wang, 1996.

Bharat and Broder estimated the size of the Web to be 200
million pages in November 1997 and the overlap between the
websites indexed by HotBot, Alta Vista, Excite and InfoSeek
to be only 1.4% Bharat and Broder, 1998. Lawrence and Giles
published their study of AltaVista, Excite, HotBot, Infoseek,
Lycos, and Northern Light in 1998. They found that the in-
dividual engines covered from 3 to 34% of the indexable Web,
based on their estimate of the size of the Web at 320 million
pages. Combining the six engines in their study covered about
3.5 times as much of the Web as one engine Lawrence and Giles,
1998.

Fast forwarding a bit, Gulli and Signorini estimated that
by January 2005 the indexable Web had increased in size to

about 11.5 billion pages and that Google’s coverage rate was
76.2%, Yahoo’s 69.3% and that of MSN Search (predecessor
of Bing) 61.9% Gulli and Signorini, 2005. Spink et al. studied
the overlap between the results of four search engines, namely
MSN, Google, Yahoo and Ask Jeeves, using data from July
2005. Their findings showed that the percent of total first page
results unique to only one of the engines was 84.9%, shared
by two of the three was 11.4%, shared by three was 2.6%, and
shared by all four was 1.1% Spink et al., 2006. In an update two
years later, they noted that the first page results of the four
engines continued to differ from one another and in fact they
included fewer results in common in 2007 than in 2005 Spink
et al., 2008.

More recently, Pirkola investigated how effectively the web-
sites of Finnish, French, and U.S. domains were being indexed
by two US-based and three Europe-based search engines Pirkola,
2009. The results showed that Google and Live Search (prede-
cessor of Bing) indexed US sites more effectively than Finnish
and French sites, the Finnish www.fi indexed only Finnish sites
and the French Voila only French sites, and the European en-
gine Virgilio indexed European sites more effectively than US
sites. In another interesting study, Wilkinson and Thelwall
compared the results of seventeen random queries submitted to
Bing for thirteen different English geographic search markets
at monthly intervals Wilkinson and Thelwall, 2013. They found
there were almost no ubiquitous authoritative results: only one
URL was always returned in the top-10 for all search markets
and points in time and that results from at least three markets
needed to be combined to give comprehensive results. There
also have been studies pointing out that the search engine re-
sults are not stable even in short windows of time Bar-Ilan,
2004; Lewandowski, 2012.

We did not find much discussion in prior work of the tech-
niques used for determining if two result pages contained links
to the same web document. For example, Spink et al., 2006;
Spink et al., 2008 simply state that this determination is done
using string comparison of URLs. It is not clear what URL
normalization Lee et al., 2005; Lei et al., 2010, if any, was done
before string comparison. It is also not clear what, if anything,
was done to address the problem of DUST - Different URLs
with Similar Text Bar-Yossef et al., 2009. Finally, there is no
mention of short URLs, although the first notable URL short-
ening service, namely tinyURL, dates back to 2002 Antoniades
et al., 2011.

In our work, we use its snippet to represent a search re-
sult. Apart from the present work, we are aware of another
work that uses snippets as a means of representing and com-
paring search results, albeit not focused on comparing Google
and Bing. Specifically, Teevan, Ramage, and Morris Teevan
et al., 2011 (TRM Study) extracted snippets of the search re-
sults from the Bing search logs for 42 most popular queries for
one week in 2009, and also obtained all the tweets containing
those queries during the same period. They then computed
per query average cosine similarity of each web snippet with
the centroid of the other web snippets and with the centroid
of the tweets. Similarly, they computed the per-query average
cosine similarity of each Twitter result with the centroid of the
other tweets and with the centroid of the web snippets. All
averaging and comparisons are done in the reduced topic space
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obtained using Latent Dirichlet Allocation (LDA) Blei et al.,
2003. We adopt this technique from the TRM study as an ad-
ditional measure of similarity in order to increase confidence in
our findings.

To summarize, all of prior work found little overlap be-
tween the first page results produced by different engines for
very many queries. Some plausible reasons have also been put
forward for this low overlap. They include that the search en-
gines are constrained in the portions of the Web they index
due to network bandwidth, disk storage, computational power,
or a combination of these items. Search engines use different
technologies to find pages and indexing them. And they deploy
proprietary algorithms to determine the ranking of the results
and their presentation to the users. Fingers have also been
pointed at implicit personalization Hannak et al., 2013.

Why another study?
Given the rich prior literature we have outlined, it is natural
to question the need for a new study on the overlap between
the search engine results. We believe that much has changed in
the recent times in the search engine market landscape and in
search engine technologies to warrant such a study. With Bing
powering Yahoo search, we now essentially have a diarchy in
Google and Bing that arbitrates user access to the English lan-
guage Web that a very large fraction of humanity accesses on
daily basis to get information. But there is no recent compar-
ative study of Google and Bing search results. It is imperative
to periodically analyze what people are able to see and read.
Such studies also lead to the creation of new analysis tools and
the questioning of conventional wisdom, thus contributing to
the advancement of science.

3 Analytical Tools

We designed two tools to be able to analyze and compare search
engine results. One, which we call TensorCompare, uses tensor
analysis to derive low-dimensional compact representation of
search results and study their behavior over time. The other,
which we call CrossLearnCompare, uses cross-engine learning
to quantify their similarity. Throughout the text, we use the
term semantic in the same way as the highly influential La-
tent Semantic Indexing work Deerwester et al., 1990 does, i.e.,
“terms in a document may be taken as referents to the document
itself or to its topic”. We discuss the two proposed methods
next.

3.1 TensorCompare

Postulate that we have the search results of executing a fixed
set of queries at certain fixed time intervals on the same set of
search engines. Suppose, further, that we have a vector repre-
sentation of each particular set of organic results, in a feature
space. For instance, that feature space could encode the set of
URLs in the results, or a bag-of-words representation of the key-
words appearing in the snippets of those results. We thus have
a four-way relation of queries, result features, the time when
these results were obtained, and the search engine that yielded
those results. This four-way relation can be represented in a

four mode2 tensor X, where (query, result, time, search engine)
are the four modes. A tensor is a higher order generalization of
a matrix (and in the case of binary relations, a tensor is simply
a matrix). We refer the interested reader to Kolda and Bader,
2009 for a thorough overview. In our case, X can be binary
valued or real valued (indicating, for instance, frequencies).

This tensor can be analyzed using the so-called canoni-
cal or PARAFAC decomposition Harshman, 1970, which de-
composes the tensor into a sum of rank-one tensors: X ≈∑R

r=1 λr ar ◦ br ◦ cr ◦ dr, where the (i, j, k, l)-th element of
a ◦ b ◦ c ◦ d is simply a(i)b(j)c(k)d(l). The vectors ar,br, cr,
dr are usually normalized, with their scaling absorbed in λr.
For compactness, the decomposition is represented as matrices
A,B,C,D. Computing the decomposition is a an intensive
task. For an I × J × K × L tensor and for R components,
the Alternating Least Squares algorithm (which is considered
the work-horse algorithm for the PARAFAC decomposition)
has complexity O(IJKLR). However, there is significant work
in exploiting sparsity Bader and Kolda, 2007a, algorithms de-
signed for Map/Reduce Kang et al., 2012, and more scalable
approaches Papalexakis et al., 2013; Sidiropoulos et al., 2014,
which enable decomposition for very large tensors. In Section
4.4, we include run-time measurements for our results.

The decomposition of X to A,B,C,D gives us a low rank
embedding of queries, results, timings, and search engines re-
spectively. Each rank-one component ar,br, cr, dr can be
seen as a co-cluster that associates queries, results, timestamps,
and search engines The largest values within each vector serve
as the membership indicators for this co-cluster: for instance,
the largest values of ar will indicate which queries are con-
tained in the r-th co-cluster. In the exemplar case where the
results are represented in a bag-of-words feature space, each
co-cluster will have a subset of the queries, a set of terms that
are prominent for those queries and are semantically similar, a
set of dates for which those result terms where produced, and
finally a set of search engines that yielded those results. An
alternative, equivalent view of each rank-one component is the
one of an augmented topic model that contains information
about the queries, the search engines, as well as the dates for
which this topic was present.

Our primary goal is to semantically compare search en-
gines, and thus we turn our attention to factor matrix D.
This matrix projects each one of the search engines to the R-
dimensional space. Alternatively, one can view this embedding
as soft clustering of the search engines, with matrix D being
the cluster indicator matrix: the (i, j) entry of D shows the
participation of search engine i in cluster j.

This leads to a powerful visualization tool that captures
similarities and differences between the search engines in an
intuitive way. Say we take search engines A and B and the
corresponding rows of matrix D. If we plot these two row vec-
tors against each other, the resulting plot will contain as many
points as clusters (R in our particular notation). The positions
of these points are the key to understanding the similarity be-

2In the literature, “mode” refers to the aspects/modalities of
the data (e.g., queries, or search engines) whose relations are repre-
sented by the tensor. We avoid using the term “dimension” because
it usually refers to the size of each mode (e.g., the number of queries,
or the number of search engines etc).

19



20 Rakesh Agrawal et al.

tween search engines.
Figure 1 serves as a guide. The (x, y) coordinate of a point

on the plot corresponds to the degree of participation of search
engines A and B respectively in that cluster. If all points lie on
the 45 degree line, this means that both A and B participate
equally in all clusters. In other words, they tend to cluster
in the exact same way for semantically similar results and for
specific periods of time. Therefore, Fig. 1(a) paints the picture
of two search engines that are very (if not perfectly) similar
with respect to their responses. In the case where we have
only two search engines, perfect alignment of their results in a
cluster would be the point (0.5, 0.5). If we are comparing more
than two search engines, then we may have points on the lower
parts of the diagonal. In the figure, we show multiple points
along the diagonal for the sake of generality.

Figure 1(b), on the other hand, shows the opposite behav-
ior. Whenever a point lies on either axis, this means that only
one of the search engines participate in that cluster. If we see
a plot similar to this figure, we can infer that A and B are very
dissimilar with respect to their responses. In the case of two
search engines, the only valid points on either axis are (0, 1)
and (1, 0), indicating an exclusive set of results. However, for
generality, we show multiple points on each axis.

Note, of course, the cases shown in Fig. 1 are the two ex-
tremes, and we expect to observe behaviors bounded by those
extremes. For instance, in the case of two search engines, all
points should lie on the line D(1, j)x + D(2, j)y = 1, where
D(1, j) is the membership of engine A in cluster j, and D(2, j)
is the membership of engine B in cluster j. This line is the
dashed line of Fig. 1(a).

Choosing the number of clusters R is a very interesting,
open problem. Typically, R is chosen to be smaller than the
rank of the tensor. However, determining that rank, unlike
in the matrix case (where the Singular Value Decomposition
reveals the rank of the matrix) is an NP-complete problem
Håstad, 1990. Fortunately, there exist useful heuristics that can
determine whether a given R is appropriate for the tensor at
hand, such as the Core Consistency Diagnostic Bro and Kiers,
2003, and the Automatic Relevance Determination Mørup and
Hansen, 2009.

TensorCompare also allows us to track the behavior of
clusters over time. In particular, given the i-th group of seman-
tically similar (query, result, search engine) cluster, as given by
the decomposition, the i-th column of matrix C holds the tem-
poral profile of that cluster. Suppose we have T days worth
of measurements. If the search engines of that cluster produce
similar results for the given set of queries for all T , the temporal
profile will be approximately constant and each value will be
approximately equal to 1

T . Otherwise, there will be variation
in the profile, correlated with the variation of the particular
results. In the extreme case where a result appeared only on
a single day, the time profile will have the value approximately
equal to one corresponding to that day, and approximately zero
for the rest of the days.

Theoretical Foundation
We next provide a Lemma that connects the plots provided

by TensorCompare to the degree of semantic overlap of two
search engines. Suppose that for a given cluster j, we denote
the membership of search engine A as x = D(A, j) and the

Algorithm 1: CrossLearnCompare
Input: RA, RB are instances of results of engines A and B.

Each instance is in the form (query, result representation in
chosen feature space)

Output: Similarity measures cA,B and cB,A between search
engines A, B.

1: Train a modelMA based on the instances RA, using the
query as a class label.

2: Train a modelMB based on the instances RB , using the
query as a class label.

3: For all instances in RB , use MA to predict the query. Set
cA,B as a measure of the classifier’s accuracy (e.g. Area
Under the Curve).

4: For all instances in RA, use MB to predict the query. Set
cB,A likewise.

membership of search engine B as y = D(B, j). For ease of
exposition, consider the case of two search engines and assume
that we have a three mode tensor: (query, result, search en-
gine).

Lemma 1. Assume a binary (query, result, search engine) ten-
sor that has exactly one rank one component. Let search engine
A correspond to the x coordinate, and search engine B corre-
spond to the y coordinate of a TensorCompare plot. For
the particular component, if search engine B has p1 fraction
of queries in common with A, and p2 portion of the result in
common with A, then

y ≤ p1p2x.

Proof. See Appendix.

In the case of a four-mode tensor, with p3 percent over-
lap in the time mode, the bound is y ≤ p1p2p3x. The above
Lemma provides an upper bound, however, we experimentally
validated that this bound is in practice tight.

3.2 CrossLearnCompare

An intuitive measure of the similarity of the results of two
search engines is the predictability of the results of a search
engine given the results of the other. Say we view each query
as a class label. We can then go ahead and learn a classifier
that maps the search result of search engine A to its class label,
i.e. the query that produced the result. Imagine now that we
have results that were produced by search engine B. If A and B
return completely different results, then we would expect that
classifying correctly a result of B using the classifier learned
using A’s results would be difficult, and our classifier would
probably err. On the other hand, if A and B returned almost
identical results, classifying correctly the search results of B
would be easy. In cases in between, where A and B bear some
level of similarity, we would expect our classifier to perform in
a way that it is correlated with the degree of similarity between
A and B.

Note we can have different accuracy when predicting search
engine A using a model trained on B, and vice versa. This, for
instance, can be the case when the results of A are a superset of
the results of B. Algorithm 1 shows an outline of CrossLearn-
Compare.
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Figure 1: Visualization guide for TensorCompare.

4 Empirical Evaluation

We now present the results of the empirical study we performed,
applying the tools just described on the search results from
Google and Bing for a wide variety of queries.

4.1 Data Set

We conducted the evaluation for two sets of queries. The
Trends set (Table 1) contains the most popular search terms
from different categories from Google Trends during April 2014.
We will refer to them as head queries. The Manual set (Ta-
ble 2) consists of hand-picked queries by the authors that we
will refer to as trunk queries. These queries consist of topics
that the authors were familiar with and were following at the
time. Familiarity with the queries is helpful in understanding
whether two sets of results are different and useful. Queries in
both the sets primarily have the informational intent Broder,
2002. The total number of queries was limited by the budget
available for the study.

We probed the search engines with the same set of queries
at the same time of the day for a period 21 days for the Trends
set, and 17 days for the Manual set, during June-July 2014.
For Google, we used their custom search API 3, and for Bing
their search API 4. For both, we recorded the top-k results. The
value of k is set to 10 by default, except in the experiments
studying the sensitivity of results to the value of k. Every
time, we ran the same code from the same machine having the
same IP address to minimize noise in the results. Because we
were getting the results programmatically through the API, no
cookies were used and there was no browser information used
by Google or Bing in producing the results Hannak et al., 2013.

3code.google.com/apis/console
4datamarket.azure.com/dataset/bing/ search

4.2 Representation of Search Results

While our methodology is independent of the specific represen-
tation of search results, we employ the snippets of the search
results provided by the search engines for this purpose. The
snippet of a search result embodies the search engine’s seman-
tic understanding of the corresponding document with respect
to the given query. The users also heavily weigh the snippet
in deciding whether to click on a search result Marcos and
González-Caro, 2010. The alternative of using URL represen-
tation must first address the well-known problems arising from
short URLs Antoniades et al., 2011, un-nomalized URLs Lee
et al., 2005; Lei et al., 2010, and different URLs with similar
text Bar-Yossef et al., 2009. Unfortunately, there is no agreed
upon way to address them and the specific algorithms deployed
can have large impact on the conclusions. Furthermore, the
users rarely decide whether to look at a document based on the
URL they see on the search result page Marcos and González-
Caro, 2010.

More in detail, for a given result of a particular query, on a
given date, we take the bag-of-words representation of the snip-
pet, after eliminating stopwords. Subsequently, a set of results
from a particular search engine, for a given query, is simply the
union of the respective bag-of-words representations. For Ten-
sorCompare, we keep all words and their frequencies; 0/1 fea-
tures did not change the trends. For CrossLearnCompare,
we keep the top-n words and have binary features. Finally, the
distribution of the snippet lengths for Google and Bing was
almost identical for all the queries. This ensures a fair compar-
ison between the two engines.

To assess whether snippets are appropriate for comparing
the search results, we conducted the following experiment. We
inspect the top result given by Google and Bing for a single day,
for each of the queries in both Trends and Manual datasets.
If for a query, the top result points to the same content, we as-
sign the URL similarity score of 1 to this query, and the score
of 0 otherwise. We then compute the cosine similarity between
the bag-of-word representations of the snippets produced by
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Albert Einstein American Idol Antibiotics Ariana Grande
Avicii Barack Obama Beyonce Cristiano Ronaldo

Derek Jeter Donald Sterling Floyd Mayweather Ford Mustang
Frozen Game of Thrones Harvard University Honda
Jay-Z LeBron James Lego Los Angeles Clippers
Martini Maya Angelou Miami Heat Miami Heat

Miley Cyrus New York City New York Yankees Oprah Winfrey
San Antonio Spurs Skrillex SpongeBob SquarePants Tottenham Hotspur F.C.

US Senate

Table 1: Trends queries

Afghanistan Alternative energy Athens Beatles Beer
Coup Debt Disaster E-cigarettes Education

Gay marriage Globalization Gun control IMF iPhone
Iran Lumia Malaria Merkel Modi
Paris Polio Poverty Rome Russia

San Francisco Self-driving car Syria Tesla Ukraine
Veteran affairs World bank World cup Xi Jinping Yosemite

Table 2: Manual queries

the two search engines for the same query. Figure 2 shows the
outcome of this experiment. Each point in this figure corre-
sponds to one query and plots the URL and snippet similarity
scores for this query. For clarity, the X and Y axes show ranges
beyond [0,1].

We see that for most of the queries for which the snippet
similarity was low, the results pointed to different documents;
on the other hand, when the similarity of snippets is high, the
documents are identical. In both Trends and Manual, there
exist some outliers with pointers to identical documents yet
dissimilar snippets (e.g. the query Tesla in Trends and US
Senate in Manual). Yet, overall, Fig. 2 indicates that snip-
pets are good instruments for content comparison.

Note that we do not consider their ordering in our represen-
tation of the search results. Instead, we study the sensitivity of
our conclusions to the number of top results, including top-1,
top-3, and top-5 (in addition to top-10).

4.3 Exploratory Aggregate Analysis

For a quick, aggregate look at the results produced by the two
search engines, we show in Fig. 3 the pairwise word frequency
distributions as scatterplots; each point corresponds to a word,
and its value on either axis is the (normalized) frequency of
occurrence in the results of the respective search engine. If
the two search engines were consistently outputting identical
results for every query, then all points would lie on the 45
degree line, which is not the case here. However, we observe a
trend of many terms having similar frequencies.

This simple analysis ignores crucial information, such as
the query (i.e. the context under which two search engines can
be similar or different), as well as the time dimension, thus
signifying the need for more specialized analytic tools, such as

the proposed methods TensorCompare and CrossLearn-
Compare.

4.4 Results of TensorCompare

The input tensor to TensorCompare has modes (query, term,
date, search engine). Our data collection results in a 32 ×
36631 × 21 × 2 tensor for the Trends dataset and a 35 ×
39725 × 17 × 2 tensor for the Manual set. For fitting the
PARAFAC decomposition, we use the CP_APR algorithm from
Chi and Kolda, 2012 that is appropriate for sparse, count data5.
More specifically, we use Tensor Toolbox from Matlab Bader
and Kolda, 2007b, which contains an efficient implementation
of this algorithm. The number of components we chose was
R = 20; however, qualitatively similar behavior was observed
for various values for R. As we discussed in Section 3.1, deter-
mining the right value for R is a hard problem. To that end, we
used the Automatic Relevance Determination heuristic Mørup
and Hansen, 2009 to validate our choice. In particular, we
computed decompositions for R = 10, R = 15, R = 20, and
R = 25, and for all those cases, the heuristic indicated that
the decomposition was of good quality. The results of Ten-
sorCompare analysis are shown in Figs. 4 and 5. Run-time
results are shown in Table 3. Figure 4 shows the similarity of
search results, while Fig. 5 shows the temporal profile of each
one of the points in Fig. 4.

The first, immediate, observation is that the latent clusters
for both query sets behave very similarly. This fact is encourag-

5The use of CP_APR is shown to perform well for sparse, count
data, and is not affected by extremely popular and highly frequent
terms. In that sense, it is fair to say that using this algorithm acts
effectively as if we used a TF-IDF normalization, which is popular
in the Information Retrieval literature.
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Figure 2: Comparing URL similarity with snippet similarity

Dataset Run-time (sec)
Trends-top10 65.8747± 67.9602
Manual-top10 43.4841± 29.0559
Trends-top5 37.4425± 47.5430
Manual-top5 81.8042± 69.1532
Trends-top1 2.1430± 1.2636
Manual-top1 4.2782± 3.1452

Table 3: Run-times for CP_APR for R = 20 components, for all the
datasets we analyze. We observe that as we reduce the number
of results (which reduces the number of non-zero elements in the
tensor), the decomposition is faster, which reflects the dependence
of the complexity on the number of entries in the data.

ing because it shows that our analysis can be applied to both
head and trunk queries. In order to interpret the aforemen-
tioned plots, we consult Fig. 1. We observe that Google and
Bing produce similar results. This is indicated by the fact that
in Fig. 4, the majority of the points lie around the (0.5, 0.5)

(a) Trends query set

(b) Manual query set

Figure 3: Term distribution between Google and Bing search re-
sults.

point (we remind the reader that this point indicates almost
exact similarity for the case of two search engines), showing
near equal participation of Google and Bing to the majority
of the latent clusters. This finding is quite surprising and is
in sharp contrast with the past studies. We further observe
that that there are somewhat more results unique to Google
than Bing since there are more clusters where Google has single
participation.

Finally, with respect to the temporal variation of the re-
sults, as indicated by Fig. 5, the temporal profile of each clus-
ter is almost uniform across time. This, consequently, means
that for both search engines, either in cases where they agree
or in cases where they produce somewhat distinct results, their
behavior is stable over time, at least as observed during the
duration of our study.
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Figure 4: Visualization of TensorCompare for Google and Bing.
Values on the x-axis correspond to the membership of Google to
a cluster, and values on the y-axis correspond to the membership
of Bing. Thus, an (x, y) point on this plot represents one of the
clusters of TensorCompare. The closer the points are to the
45-degree line, the more similar are the two search engines.

4.5 Results of CrossLearnCompare

We next present our analysis of the application of CrossLearn-
Compare to the search results of two engines. To obtain fea-
ture space for our instances, we remove terms that are verbatim
equal to or contain the query string and then take the 100 high-
est frequency words for each search engine. We use the union
of these two bags of words as the feature space of the training
and testing instances. Each such instance is, thus, the vector
space representation of a result for a given date and position
in the result-set. We use a binary representation, where 1 in-
dicates that the corresponding word appears in the particular
instance.
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Figure 5: Temporal profile of latent clusters given by TensorCom-
pare, for Google and Bing. The y-axis corresponds to the member-
ship of the particular day to the cluster of interest. For both query
sets, the temporal profile of all clusters is approximately constant
over time. In particular, each value for Trends is ≈ 1/21 and
for Manual it is ≈ 1/17. As stated in Section 3.1, this indicates
that both Bing and Google returned persistent results, at least
during the duration of our experiment. Due to this uniformity, we
overplot all clusters, without making any distinctions.

We train one-vs-all linear SVM classifiers for each query set,
for each search engine. The performance of the two classifiers of
CrossLearnCompare for the two query sets is shown in Fig.
6; the measure of performance used is the standard Receiver
Operating Characteristic (ROC) curve Brown and Davis, 2006.
There are four curves on the same figure, showing the perfor-
mance of predicting Bing using Google and vice versa, and for
query sets Trends and Manual. Table 4 contains the Area
Under the Curve (AUC) for the ROC curves shown in Fig. 6.

Firstly, we observe that the search results are mutually
highly predictable for the Trends query set. This implies that
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Figure 6: ROC curves produced by CrossLearnCompare (higher
is better in terms of classification accuracy). If two search engines
were completely mutually predictable, the ROC curve would be
exactly on the (0, 0) − (0, 1) and (0, 1) − (1, 0) lines. Conversely,
if two search engines were completely mutually unpredictable, the
ROC curve would lie on the (0, 0)− (1, 0) and (1, 0)− (1, 1) lines.
Finally, when the classifier is random, the curve would lie on the
45-degree line.

Trends → Trends ← Manual → Manual ←
Google- Bing 0.99 1.00 0.92 0.73

Table 4: Area Under the Curve (AUC) results for CrossLearn-
Compare. The right arrow→ indicates that we use the left search
engine to predict the right one, and ← the converse.

the top results for these popular queries for Google and Bing
are very similar. The same behavior continues to be observed
for the Manual query set, albeit Google results are somewhat
less predictable from Bing results.

4.6 Query Level Analysis

We next present the findings of our overlap analysis at a finer
level. TensorCompare yields groups of queries, terms, and
search engines, wherein one can study the context under which
the search engines agree and disagree. Table 5 shows six exem-
plar groups where Google and Bing have equal participation;
for each group, we show the top-10 snippet terms that were
in common within the search results. On the other hand, Ta-
ble 6 shows exemplar groups where Google and Bing produced
distinct clusters. We note that Groups #2 and #3 from the lat-
ter table are interesting because they share two of the queries
(Afghanistan and Syria). That these queries resulted in clusters
exclusive to Google and Bing indicates that the search engine
produced different results for them.

CrossLearnCompare naturally yields a query level anal-
ysis as it frames the comparison as a multi-class classification

problem, where queries are the different classes. Figure 7 shows
the mutual predictability of Google and Bing per query, for
both query sets. We observe that for Trends, both Google
and Bing are highly mutually predictable (therefore have high
overlap in search results) for the vast majority of the queries;
for Manual, we observe a small decrease in the overlap, nev-
ertheless a large fraction of the queries exhibit high overlap.
Consistent with the results of Table 6, we see that Afghanistan
and Syria have low overlap, compared to the majority of the
queries.

4.7 Validation Using the TRM Method

Recall our discussion of the TRM method Teevan et al., 2011,
provided in Section 2. Since the TensorCompare method can
be seen as a topic model over the results, the queries, and the
search engines, we apply the TRM method to the topics (sets
of terms) emerging from TensorCompare. We first apply
tensor analysis to the Google and Bing results to obtain their
representations in the latent space. We then compute the cen-
troids for the Google and the Bing results topics, and for every
result from Google and Bing (for all queries and days), we com-
pute its cosine distance from each centroid. While calculating
the centroids, we ignore topics that are shared between Google
and Bing and keep those that lie on the (0, 1) and (1, 0) points
of the TensorCompare plots. Essentially, by doing this, we
are calculating the largest distance between Google and Bing
topics. We present the results of this experiment in Table 7.

Trends
To Google centroid To Bing centroid

From Google result 0.13 0.11
From Bing result 0.11 0.13

Manual
To Google centroid To Bing centroid

From Google result 0.20 0.16
From Bing result 0.13 0.16

Table 7: Similarity from centroids

For the Trends set, the difference between the four dis-
tances is not statistically significant, whereas for the Manual
the differences are statistically significant, albeit very small. In
general, Table 7 shows the distance of a result from both the
Google and the Bing topic is small, corroborating our obser-
vation that the overlap in results among Google and Bing is
large.

4.8 Sensitivity Analysis

One might wonder how sensitive are our conclusions to the fact
that we analyzed the top-10 search results. To this end, we ap-
ply TensorCompare and CrossLearnCompare to the top-
5, top-3, and top-1 search results, for both Trends and Man-
ual query sets. Figures 8 and 9 show the results of this analysis
for top-5 and top-1 for TensorCompare and CrossLearn-
Compare respectively. The results for top-3 lie between top-5
and top-1 and have been omitted.

We see that our earlier findings are robust and consistent
with the ones presented here. A few specific remarks follow:
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Queries San Antonio Spurs Donald Sterling Albert Einstein self-driving car Athens World bank
Miami Heat Los Angeles Clippers San Francisco Modi

Terms

news sterling einstein google information world
miami donald albert driving san bank
heat clippers physicist car francisco narendra
san angeles born self city minister

antonio owner biography cars county prime
spurs 2014 1879 autonomous offers india
scores nba march steve official countries
stats racist quotes announced guide development
team former german own greece international

schedule team web steering services loans

Table 5: Query groups where Google and Bing have equal participation (TensorCompare).

Group 1 Group 2 Group 3 Group 4

Queries

Syria Frozen San Francisco Afghanistan
education American Idol Rome Iran

Afghanistan Lego Athens Syria
Merkel Russia

Terms

city news news idol
breaking american hotels country
videos digita san economyl
world com francisco politics
com disney attractions information

information blu restaurants world
people ray capital republic
photos 2013 information breaking
politics dvd tours islamic
angela season italy iraq

Search Engine Google Google Bing Bing

Table 6: Query groups unique to Google or Bing (TensorCompare).

• The two search engines continue to exhibit more similar
results for the Trends query set (head queries) than
the Manual set (trunk queries).

• Using top-5 as the cut-off, the similarity is slightly higher
than using top-10. This indicates that it is more likely
that the search engines will have an exclusive result be-
low position 5.

• For the single top result, even though there is similar-
ity, the top result is not necessarily the same (but the
manual inspection reveals that the top result of one is
almost always present in the top-5 of the other).

• The results of CrossLearnCompare reinforce the find-
ings of TensorCompare. For top-5, the classifier learned
using the results of one search engine is able to quite ac-
curately predict the results of the other. However, given
the sensitivity of the top result to the position, the per-
formance degrades for top-1.

5 Summary, Limitations, and Future Work

We introduced two novel tools for studying the similarity and
distinctiveness of web results of search engines. Our main ob-
servation, stemming from our analysis, is that Google and Bing
exhibited a significant degree of similarity in the semantics of
their search results in our data set. This observation is in sharp
contrast to the prior published work where minimal overlap is
reported. A fair interpretation of our observation is stating
that the visual experience of users in Google and Bing is very
similar for the queries we studied. This can be seen as an upper
bound to the exact number of overlapping results, which the
prior work is trying to estimate.

Our results depend on the particular choice of queries. It
is possible that if one adversary chose a set of queries from
the long tail, our tools would indicate minimal overlap, how-
ever this would not reflect realistic users’ search patterns. Our
selection of queries, within the budget limitation of the study,
strikes a balance between queries on the head of the distri-
bution (Trends) and queries that span a wider spectrum of

26
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(a) Google to Bing (Trends)
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(b) Bing to Google (Trends)
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(c) Google to Bing (Manual)
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(d) Bing to Google (Manual)

Figure 7: Prediction precision per query (CrossLearnCompare). For the majority of queries, Google and Bing are highly mutually
predictable.

popularity (Manual). Furthermore, our results rely on the
assumption that the snippet similarity is a good proxy for web-
page similarity. We experimentally validate this assumption
for the queries that we studied, however, an adversarially cho-
sen set of queries (e.g., on the long tail, as before) or a set of
adversarial snippet generators (e.g., choosing terms at random
from the web-page ), may violate this assumption.

We can only speculate why there is greater convergence in
the results produced by the two search engines. They include
deployment of greater amount of resources by search engines
to cover a larger fraction of the indexable Web, much more
universal understanding of search engine technologies, and the
use of similar features in ranking the search results.

In the future, we would like to explore the feasibility of
building a search engine that uses signals not used by Google
and Bing and yet produces useful results. Such signals could
possibly come from social networks. It will also be interesting

to explore the practicality of explicitly designing-in diversity
into search engines Maltese et al., 2009.

Proof of Lemma 1

Proof. Consider a tensor X with dimensions I × J × 2 (in our
case, the first mode corresponds to queries, the second to re-
sults, and the third to search engines). Assume that X is rank
one, which means that there is one component in its PARAFAC
decomposition. In the frontal slice corresponding to the first
search engine (Slice 1 in Fig. 10), we have Q queries and T
results forming a perfect block, which we assume to be filled
with 1’s. The second slice, which corresponds to the second
search engine, has a block that spans only a fraction of the
queries and results of Slice 1.

We assume that the components a,b of the PARAFAC
decomposition are normalized by their `2 norm, and the scaling
is absorbed in c. We further assume that the components are
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Figure 8: TensorCompare sensitivity

non-negative.
Let â , b̂, ĉ be the optimal solution. An upper bound

a,b, c to the optimal is the following: The first Q elements
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Figure 9: CrossLearnCompare sensitivity
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Figure 10: The two slices of X.

of a will be equal to 1√
Q

(the rest are zero), and the first T
elements of b will equal 1√

T
. This implies that the coefficients

of c =
[
c1 c2

]2, which multiply abT in order to approximate
the respective slices of X, will be proportional to the respective
densities of the blocks in either slice, i.e. c1 ∝ d1 and c2 ∝ d2
Making this uniformity assumption for the non-zero elements
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of a,b allows us to bound the ratio of the coefficients of ĉ
by the ratio of the densities of the blocks in each slice. More
specifically, we have

ĉ1

ĉ2
≤

d1

d2
=

QT

p1Qp2T
=

1

p1p2
.

Hence, ĉ2 ≤ p1p2ĉ1. If we substitute y = ĉ2 and x = ĉ1, as
they correspond in Fig. 1, then we have shown the desired
upper bound.
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