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ABSTRACT

The economic benefits of crowdsourcing have furthered its widespread use over the past d ecade. However, increas-
ing numbers of fraudulent workers threaten to undermine the emerging crowdsourcing economy: requestors face 
the choice of either risking low-quality results or having to pay extra money for quality safeguards such as gold 
questions or majority voting. The more safeguards injected into the workload, the lower are the risks imposed by 
fraudulent workers, yet the higher are the costs. So, how many of them are actually needed? Is there a generally 
applicable number or percentage? This paper uses deep learning techniques to identify custom-tailored numbers 
of gold questions per worker for individually managing the cost/quality balance. Our new method follows real-life 
experiences: the more we know about workers before assigning a task, the clearer our belief or disbelief in this 
worker’s reliability gets. Employing probabilistic models, namely Bayesian belief networks and certainty factor 
models, our method creates worker profiles reflecting different a-priori belief values, and we  prove that the actual 
number of gold questions per worker can indeed be assessed. Our evaluation on real-world crowdsourcing datasets 
demonstrates our method’s efficiency in saving money while maintaining high-quality results.
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1 Introduction

In recent years, several hybrid solutions for augmenting and
extending traditional database capabilities with intelligent hu-
man steering have been developed. For example 1) processing
queries that cannot be adequately answered by database sys-
tems (Franklin et al., 2011), such as skyline queries (Lofi et al.,
2013), top-k and group-by queries (Davidson et al., 2013; Zheng
et al., 2015), and 2) dealing with missing information (Nieke
et al., 2014). The benefits for data science come as no sur-
prise, since crowdsourcing is relatively cheap, agile, and offers
an intelligent and global 24/7 online labor pool. However, the
anonymity of workers on the platforms and the short-term na-
ture of the work contracts also invite fraudulent misuse threat-
ening to cancel the benefits. In contrast to traditional work-
places, crowdsourcing requestors do not know much about the
workers they are hiring: there is no interview process, no CVs,
no personal impressions. In the best case for crowdsourcing,
platforms offer reputation scores from previous work. Unfor-
tunately, it has been shown that reputation systems only work
for long-standing relationships. As an analogy, remember peer-
to-peer networks: also here reputation systems have been pro-
posed to combat malicious peer behavior, see, e.g., (Aberer and
Despotovic, 2001; Kamvar et al., 2003). However, meaning-
ful scores were difficult to construct since reputations suffered
from the cold start problem (Daltayanni et al., 2015) and were
easy to fake (Yu and Singh, 2003). These problems become
even more pronounced in crowdsourcing due to the high at-
trition rates of workers (Ross et al., 2010) reports about 70%,

i.e., relationships tend to be even more short-termed than in
peer-to-peer systems. Hence, crowdsourcing requestors usually
favor on-the-run methods to instantly judge workers leverag-
ing the limited amount of information provided. For the rest
of this paper and without loss of generality we will focus only
on gold questions as a quality mechanism, i.e., questions whose
correct answers are known to the requestor and where fail-
ing to answer a preset number of them indicates fraud. Until
now the problem of “how many gold questions to use?” has
no definitive answer (Liu et al., 2013). Obviously, there is a
cost/quality trade-off: the more gold questions are used, the
better the output’s quality will be, yet the higher the costs are.
If too many gold questions are posed after a certain number of
questions, the returned benefit becomes minimal, and the costs
become unjustifiably high. On the other hand, if too little gold
questions are posed, the returned result remains inconclusive
in determining the worker’s reliability or fraudulence.

In this paper, we develop a worker-aware ad hoc method
that exploits the limited information known about the short-
term hired workers. We transform this information into a dig-
ital personal impression indicating whether a worker matches
the profiles of fraudulent or reliable workers. Profiles of fraud-
ulent workers come at a higher risk, and should thus be tested
more rigorously, whereas profiles of reliable workers come at a
lower risk and need only be loosely tested. Our goal with our
proposed approach is not to discriminate workers but rather to
adjust the number of gold questions to assess more realistically
the quality of the work that he or she is delivering. In other
words, our method does not attempt to exclude workers, but
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rather to instantiate more quality controls in case of fraudulent
behavior. However, in the case of false positives task providers
will have to decide on the acceptance rate on the gold ques-
tions to minimize the impact of exclusions. Accordingly, for our
method’s technical implementation we turn to well-established
approaches for uncertainty management. Namely, we investi-
gate the usage of both: 1) probabilistic certainty factor models
(Stadler, 2004) pioneered for uncertain deduction of diagnoses
by medical expert systems.

The model reflects the relative change of belief and/or dis-
belief in some hypothesis given new observations, i.e., in our
case the relative change in the high/low risk associated with
a worker. 2) Bayesian Belief Networks, which express uncer-
tainty through probabilities. Using either of these models al-
lows building a system of decision rules, which create digital
impressions of each worker and what we refer to as enhanced
worker profiles. These worker profiles do not only encode what
is known about a worker but also assess the risks involved with
a worker by either 1) relative apriori belief or disbelief mea-
sures as given by the certainty factor model or 2) probabilities
as given by the Bayesian belief network. Our underlying as-
sumption is that the higher the belief value or the probability
in a worker’s reliability, the lower the risk, and the less gold
questions may be used. The higher the disbelief value or, the
lower the probability in a worker’s reliability, the higher the
risk, and the more gold questions should be used. By per-
sonalizing the number of questions to be asked based on these
enhanced profiles, we can then save some money, while main-
taining a high level of result quality. To realize this underlying
idea, we identify the exact number of gold questions to be asked
(the gold par), by fitting an exponential distribution of number
of questions to be asked on top of the values of belief/disbelief
and probabilities.

In this paper, we extend our work presented in (Maarry
and Balke, 2018) to explore the potential and limitations of
latent representations based on neural networks in our quest
to distinguish between fraudulent and reliable workers. In-
deed, distinguishing between reliable and fraudulent workers is
a fundamental component of our proposed approach to adjust
the number of gold questions dynamically. Thus, given the
success of Deep Learning models in fields such as computer vi-
sion and natural language processing, we test in this work their
applicability to our particular setting. In particular, given the
limited amount of both data and attributes, we restricted our
investigation to a particular neural network architecture called
‘Siamese Networks’ (Section 4.3) that we hypothesized could
be a good fit for our problem. We demonstrate the applicabil-
ity of our method on real-world crowdsourcing test data of 200
workers and compare how well it performs regarding overall re-
sult quality, the effectiveness of the algorithm, fraud detection’s
failure rates, and discrimination rates against reliable workers.

However, further work could be done, if data is available, to
account for a different type of spammers: colluding spammers.
As introduced in (Checco et al., 2018), colluding spammers
can undermine the use of gold questions. In particular, as the
authors demonstrated in their paper, it is feasible to build and
deploy a system that can detect which parts of a crowdsourcing
job are more likely to be gold questions (Checco et al., 2018).
Given that it is unlikely to get more attributes for building our

profiles, such an attack in gold questions will be for us relevant
to investigate if we can get access to training data with such
“colluding spammers”. Otherwise, our main assumption high-
performance on gold questions leads to low-risk workers will
not work as expected.

2 Safeguards in Practice

Many safeguards for quality issues in crowdsourcing systems
have been investigated. We identify four families of safeguards:

Pessimistic safeguards ensure high quality by directly iden-
tifying fraudulent workers and excluding them. The most com-
mon approach in this family are gold questions randomly in-
jected into the workload. Failing to answer a preset num-
ber of these questions (whose correct answers are known by
the system), declares the corresponding worker as fraudulent,
in turn leading to exclusion. These safeguards are typically
worker-oblivious, i.e., no distinction in the underlying testing
mechanism is made for different workers. A notable exception
is skill-adapted gold questions (Maarry and Balke, 2015) and
adaptive gold questions (Maarry et al., 2015), which aim at
adapting gold questions to the underlying skills of workers for
a fairer judgment of workers in alignment with the vision of
impact sourcing.

Optimistic safeguards ensure high quality by aggregating
the results of multiple workers on a given task. The best-
known aggregation method here is majority voting. Other
weighted aggregation methods in the literature include the ex-
pectation maximization (EM) algorithm (Dawid and Skene,
1979), a Bayesian version of the EM algorithm (Pearl, 1985),
and a probabilistic approach in (Whitehill et al., 2009). This
family is more worker-aware, as it tries to identify the workers’
reliability and may distinguish different levels of skills, which
can then be incorporated as weights in the final step of aggre-
gation.

Feedback-based safeguards ensure high quality by monitor-
ing the history of workers and their outputs’ feedback Ignja-
tovic et al., 2008, thus making it also a worker-aware family
of safeguards. A typical example of this family is reputation-
based systems, whether based on a reputation model (Krieg,
2001; Lofi et al., 2013) or deterministic approaches (Noorian
and Ulieru, 2010).

Incentive-based safeguards ensure high quality by motivat-
ing the workers either intrinsically or extrinsically (Hossain,
2012). Intrinsic refers to motivations inherent to the task it-
self, e.g., Zooniverse1. Extrinsic refers to external motivations
that offer some reward, e.g., monetary rewards (Kazai, 2011).

Our proposed method falls under the pessimistic safeguard
family but is a worker-aware method. Moreover, in contrast to
the pessimistic safeguards, our method is designed to adapt to
each new worker, by re-computing the sufficient number of gold
questions needed to distinguish between reliable and fraudulent
workers.

The most relevant work on adaptive quality control is (Liu
et al., 2013) who investigated the universal number of gold
questions needed. Although they concluded that the problem

1https://www.zooniverse.org/
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is unlikely to reach a definitive answer, their work provides a
rule of thumb for the optimal number of gold questions to be
used: either linearly with or following the order of the square
root of the total size of the task given to a worker. The choice
of either rule of thumb depends on the corresponding level of
aggregation used: two-stage or joint inference. Since this is
closest to our work, we designated it as a baseline and com-
pared our results against the order of the square root scaling
rule for the optimal number of questions to be used. We com-
pare among others the overall number of gold questions needed,
the overall accuracy rate of the gold questions as a safeguard
for distinguishing between reliable and fraudulent workers (see
Section 5).

3 Creating Worker Profiles

We can formally concisely define the problem as follows

Problem Definition. Given a crowdsourcing task T compris-
ing n questions, we want to find the minimal number of gold
questions m, such that 0<m<n needed to determine the reli-
ability of a given worker w. A reliable worker is defined as a
worker, whose accuracy rate on a crowdsourcing task >0.75

Our method can be divided into three necessary steps:
1. Creating a system of decision rules: the enhanced work-

er profiles. For building these profiles and their corre-
sponding encoding of associated risks, we experiment
with two approaches: a) Bayesian belief networks, which
encode risks with probabilities and b) certainty factor
models, which encode risks with relative apriori mea-
sures of belief and disbelief. We turned to both of these
models, as they are well-established approaches for un-
certainty management. The uncertainty in our problem
materializes in our attempt to reason whether a new
incoming worker is reliable or not based on uncertain
knowledge.

2. Identifying the minimum required number of gold ques-
tions for each enhanced worker profile, the gold par.

3. Mapping the workers to their corresponding enhanced
profile.

In this section, we focus on the first step of creating en-
hanced worker profiles; Section 4 covers the second and third
step. Starting with certainty factor models and Bayesian belief
networks, we map and redefine both models’ parameters to our
crowdsourcing setup.

3.1 The Certainty Factor Model (CF)

The probabilistic certainty factor model (CFM) was first devel-
oped by (Shortliffe and Buchanan, 1975) for MYCIN, a medi-
cal expert system employing certainty factors (CF) for uncer-
tain deduction within heuristic systems. In essence, CFs do
not correspond to probabilities, but rather depict the relative
change of belief and/or disbelief in some hypothesis H given a
certain observation E. The combinations of these Measures of
BeliefMB(H|E) andDisbeliefMD(H|E) constitutes the CFs.
These measures are relatives and are not to be confused with

probabilities. Nevertheless, their values are normalized to span
between [0, 1], with 1 representing the highest belief or disbelief
with respect to a certain hypothesis H , and 0 representing the
lowest belief or disbelief, again with respect to a certain hypoth-
esis H. Moreover, these measures are individually observed, i.e.
for MB(H|E) = x and MD(H|E) = y 6=⇒ x+ y = 1

Definition 1 MB, MD and CF. Given an observation E and
a Hypothesis H, we can compute the MB(H|E),MD(H|E),
and the CF (H|E)

MB(H|E) =

{
max[P (H|E),P (H)]−P (H)

1−P (H) if P (H) is 6= 1

1 otherwise

MD(H|E) =

{
P (H)−min[P (H|E),P (H)]

P (H) if P (H) is 6= 0

1 otherwise

CF (H|E) =MB(H|E)−MD(H|E)

In other words, CF (H|E) can also be formulated as follows:

CF (H|E) =

{
P (H|E)−P (H)

1−P (H) if P (H|E) ≥ P (H), P (H) is 6= 1
P (H|E)−P (H)

P (H) if P (H) ≥ P (H|E), P (H) is 6= 0

The CF rules’ value span between [−1.0, 1.0]. Subsequently,
we distinguish two types of rules:

1. Confirming CF rules: are those having a high measure
of belief, i.e., positive certainty factor value CF (H|E) ≥
0.

2. Disconfirming CF rules: are those having a high mea-
sure of disbelief, i.e., negative certainty factor value
CF (H|E) < 0.

Given a set of CF rules, new rules/deductions can be auto-
matically drawn: 1) chaining and 2) parallel combination. The
latter is of particular interest: it consolidates different observa-
tions leading to the same hypothesis. This allows us to create
more complex CF rules, which combine several independent
observations. Parallel combination can be efficiently computed
from the rules directly; that is, there is no need to go back to
the data for computations.

Definition 2 Deduction by Parallel Combination. Given
two CF rules: CFE1

(H) and CFE2
(H) where two observations

E1 and E2 lead to the same Hypothesis H. A new CFE1E2(H)
can be deduced by parallel combination as follows:

CFE1E2(H) =


x+ y − x ∗ y for x ≥ 0, y ≥ 0

x+ y + x ∗ y for x ≤ 0, y ≤ 0
x+y

1−min(|x|,|y|) for − 1 < x ∗ y < 0

where x = CFE1
(H) and y = CFE2

(H)

In case of combining more than two CF rules with different
observations, the above definition applies by taking the result
of the first two combined CF rules and designating it as x when
combining it with the next CF rule and so on (Mellouli, 2014).
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3.2 Bayesian Belief Network (BN)

Bayes nets belong to the family of probabilistic graphical mod-
els and are used to represent/infer knowledge about an uncer-
tain domain (Pearl, 1985; Pearl, 1988). Somewhat similar to
our crowdsourcing problem, Bayes nets have been applied to
the target recognition problems, where transponders should be
identified as Friend or Foe (Krieg, 2001).

Bayes nets encode a directed acyclic graph G. The di-
rected property of the graph complies with our problem, since
our underlying idea is that observing certain attributes of the
workers lead to a certain belief value in the reliability of a
worker. Accordingly, this directed relationship from the ob-
servations to the hypothesis can be represented in Bayes Nets
with a directed graph. Formally, Bayes nets B is given by the
pair B =< G, θ >. The graph G is made up of a set of random
Variables V , depicted by n nodes x1, x2, ..., xn, and directed
edges

−→
E : xi → xj . The underlying semantics of Bayes nets,

namely, the local markov property defines an ordering of the
nodes such that only the nodes indexed lower than i can have
a directed path to xi. The nodes are the worker’s observa-
tions and the hypothesis to be inferred, i.e., the reliability of
the worker. There are different types of nodes: Root, Par-
ent and Child nodes. The edges E represent the probabilistic
dependency between the nodes. For discrete variables, the re-
lationship between them is given by the conditional probability
distribution. The second parameter θ depicts the full joint dis-
tribution as follows:

Definition 3 Full Joint distribution of BN. The full joint
distribution for a Bayes net B having n nodes x1, x2, ..., xn, can
be defined by the product of the local conditional distributions

P (x1, x2, ..., xn) =
∏

1≤i≤n
P (xi|Parents(xi))

There are two types of reasoning: Predictive support and
diagnostic support. Predictive support is top-down reasoning
starting from the parents’ node to the child node, while di-
agnostic reasoning is bottom-up reasoning starting from the
child node. Since we aim to infer whether a worker is reliable,
i.e., inferring the child node/hypothesis, we follow the predic-
tive support inference (see Definition 4). In our crowdsourcing
setup, the random variables V are the workers’ observations
and are depicted by the parent nodes. The parent nodes in
our case also happen to be the root nodes, since they have no
predecessor nodes, while the hypothesis is the child node. Each
root node has a prior probability distribution.

Definition 4 Inferencing in BN. We can infer the strength
of our hypothesis H having seen a worker’s observation E using
the Bayes nets conditional probability formula:

P (child|parent) = P (child, parent)

P (parent)

i.e.

P (H|E) =
P (H,E)

P (E)

Figure 1: Correlation between workers’ gold question’s accuracy
and overall accuracy rate

3.3 Formulating the Hypothesis: H

For our crowdsourcing setup, the hypothesis is always the same.
Namely, given a pool of workers W , a worker w ∈ W is a reli-
able worker. It follows then that workers fitting low risk pro-
files (i.e., profiles with a positive CF value, whereMB(H|E) >
MD(H|E) or profiles with P (H|E) ≥ 0.5 come at lower risk,
while those fitting high risk profiles (i.e. profiles with a nega-
tive CF value, where MB(H|E) < MD(H|E) or profiles with
P (H|E) < 0.5 come at higher risk (more on how to map a
worker to a worker profile is explained in Section 4.2). But
the question of how to define such a reliable worker instantly
arises. The difficulty of this question lies within the scarcity
of the data the requestor has on a particular worker, who is
more often than not, a new worker. Currently, the only ad hoc
quantitative metric available to the requestors is the accuracy
rate of a worker on the gold questions.

In general, we seek workers whose overall accuracy rate is
higher than 75%. An initial correlation investigation between
the accuracy rate on the gold questions and the overall accu-
racy rate on the whole task shows, as expected, a high positive
correlation of 0.7 (see Figure 1). Outliers can also be observed,
which is attributed to 1) strategic spammer schemes, where
they always submit the frequent answer label, 2) inherently
small crowdsourcing tasks, e.g., five tasks and one gold ques-
tion. We ran this experiment on real crowdsourcing datasets
comprised of 1006 workers, with 40% gold questions (see Sec-
tion 5.1).

Accordingly, we generally define the hypothesis that a worker
is reliable if he/she attains at least 75% accuracy rate on the
gold questions. Eventually, however, workers fitting low-risk
profiles are assigned less gold questions, while workers fitting
high-risk profiles are assigned more gold questions. Conse-
quently, we vary the expected quality thresholds such that
workers fitting the disconfirming profile with the lowest value,
i.e., CF (H|E) → −1.0 or P (H|E) = 0, should attain at least
75% quality rate, while workers fitting profiles with higher val-
ues should attain higher quality rates. The idea is to decrease
the discrimination rate against workers fitting high risk pro-
files, while still maintaining the threshold quality. On the other
hand, workers fitting low risk profiles should prove their relia-
bility even more so by scoring higher quality thresholds. Thus,
we uniformly fit the quality thresholds to be attained on the
belief/disbelief values and probabilities, such that the thresh-
olds range between 75% - 100%, where the high risk worker
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profile: CF (H|E) → −1.0 or P (H|E) = 0 should attain at
least 75% accuracy rate on gold questions to be considered re-
liable, while the low risk worker profile: CF (H|E) → 1.0 or
P (H|E) = 1 should attain a perfect 100% accuracy rate to be
considered reliable. In practice, such a perfect profile does not
exist.

3.4 Formulating the Observations: E

Observations capture the limited information we know about
workers. Of course, all attributes available in crowdsourcing
platforms can and should be exploited for best discrimina-
tion accuracy. As all crowdsourcing tasks were run on the
CrowdFlower2 platform (see Section 5.2), below we list the
publicly available attributes offered by CrowdFlower. For each
attribute, we also investigated its domain to find out which of
its instances should be considered as an observation. An at-
tribute’s instance is a valid observation if it is frequent since
both CF rules and Bayesian conditional probabilities become
unreliable if based on sparse observations.

1. Channel : There are 30 different crowdsourcing channels,
from which workers are hired. Only eight channels, how-
ever, are dominating our labor quota, leaving 22 chan-
nels providing only around 4.3% of the total workforce
(see Figure 2). Accordingly, we only use the top 8 chan-
nels as observations, which constitute 95.6% of the data.

2. Country : In total, we have workers from 75 different
countries. Figure 3 shows a clear Zipfian distribution,
with 85% of workers coming from only 24 countries. We
limit our observation to these 24 countries ignoring the
distribution’s tail.

3. Started_at : this attribute marks the time (GMT) at
which a worker started working. On its own, this at-
tribute would not make much sense, but rather in combi-
nation with the country, since it would indicate whether
working in the morning, evening or night is more reli-
able. As seen in Figure 4, about 88.7% of the workers
worked between 08 am - 6 pm. We used these hours for
our observations.

4. City : the city attribute proved too sparse, as it is only
available for 71% of the workers (i.e., 716 workers). More-
over, it exhibited an extremely long-tailed distribution
of 462 cities. The head of the distribution, on the other
hand, had two cities: Caracas and Belgrade, comprising
7% of the workers. Accordingly, we chose to disregard
the city attribute all together as a discriminating obser-
vation.

5. Trust : the trust attribute ranges between 0.0 and 1.0
and is computed by the platform based on the last task
a worker performed. For this attribute, all values proved
sensible to be taken as observations. We aggregated
the values by grouping them into intervals of 0.1, thus
yielding ten values of trust.

Overall, our models’ observations comprise eight channels,
eight different hours to work within, 24 countries and ten levels
of trust.

2https://www.crowdflower.com/

Figure 2: Channel attribute domain analysis

Figure 3: Country attribute domain analysis

4 Towards the Gold Par

After computing the enhanced worker profiles, the next step is
to determine how many gold questions are sufficient per profile,
depending on the profiles’ encoded risk.

4.1 Mapping Profiles to the Gold Par

Following our notion that low-risk workers should be asked less
gold questions than high-risk workers, both the uniform and the
exponential distribution could mimic this notion when fitted on
top of the enhanced worker profiles, such that at the worst case
scenario, e.g., CF (H|E)→ −1.0, 50% gold questions should be
asked, and at the best case scenario, e.g. CF (H|E)→ 1.0, only
1 gold question needs to be asked. Note that such a perfect
profile does not exist in practice.

The exponential distribution, however, has a lower discrim-
ination rate than the uniform distribution, since low-risk work-
ers are given more gold questions, thus more chances, to break
away from their high-risk profile. Moreover, the exponential
distribution also takes into account, that gold questions could
be imbalanced and that some of them might be more difficult
i.e. honest workers fitting high-risk profiles might end up get-
ting the short end of the stick. Whereas, workers fitting low-
risk profiles get exponentially less number of questions, which
also decreases the overall costs of utilizing safeguards.

Experimenting with various exponential distributions hav-
ing different rate parameters yielded the best results with the
exponential distribution f(x, λ) = λe−xλ, where λ = 2 (see
Figure 5). As discussed in Section in 3.3, although workers
fitting low risk profiles get a less number of gold questions,
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Figure 4: Started_at attribute domain analysis

Figure 5: Exponentially Fitting the Gold Par to the enhanced
worker profiles

they are expected to score higher accuracy rates. This is simi-
lar to real world situations, where workers compete with front
runners in their field.

4.2 Mapping Workers to their Profile

After computing the enhanced worker profiles for all the dif-
ferent observations and all the different combination of obser-
vations, these profiles could be stored in a database, against
which new incoming workers can be mapped to. The mapping
of a new worker to a profile is based on the matching of obser-
vations. Since we combine observations to create more complex
profiles, a worker may fit multiple profiles which could be low
risk or high risk. There are multiple strategies here to choose
which profile to use:

• Optimistic mapping, where the worker is mapped to the
enhanced worker profile with the highest belief value or
probability. Here, workers are given the benefit of the
doubt, and they are assigned less gold questions.

• Pessimistic mapping, where the worker is mapped to the
enhanced worker profile with the highest disbelief value
or lowest probability. Here, a more skeptical approach
is taken, and the workers are subject to more gold ques-
tions.

In our evaluation section, we tested both the optimistic
and pessimistic mapping. As to be expected, the pessimistic
mapping is more expensive, since more safeguards are used.

Figure 6: The Siamese Architecture

4.3 Siamese Neural Network Architecture

In this section, we introduce the Siamese Neural Network Ar-
chitecture that we use in this work. We will follow the def-
inition provided by (Bromley et al., 1993) where researchers
introduced this neural network architecture. In (Bromley et
al., 1993) researchers established the Siamese network as “a
neural network architecture that consists of two identical sub-
networks joined at their outputs. The Siamese network has
two input fields to compare two patterns and one output whose
state value corresponds to the similarity between the two pat-
terns”. In short, the Siamese network tries to learn to differenti-
ate between two inputs. Herein, we try to learn to differentiate
between reliable and fraudulent workers (Figure 6).

Since its inception in (Bromley et al., 1993) different tai-
lored Siamese networks have been deployed to target different
problems successfully. Two major applications of the Siamese
network can be found in semantic tasks in Natural Language
Processing and of course in Computer Vision. In the following
discussion, we review relevant work that motivated our design
decisions. For instance, in (Mueller and Thyagarajan, 2016)
researchers presented a Siamese architecture using Long Short-
Term Memory networks (LSTMs) as the sub-networks to learn
a semantic distance between pair of sentences. The Siamese ar-
chitecture outperformed strong baselines in the semantic task.
The model used the Manhattan distance on top of the learned
shared representations to make predictions. The success of the
model in (Mueller and Thyagarajan, 2016) inspired one of our
tailored models that uses the same distance measure but with
a different sub-network architecture. In a similar line of work a
Siamese architecture described in (Das et al., 2016) tackled the
challenge of finding similar semantic questions in online com-
munity question-answering systems. Instead of the Manhattan
distance, researchers in (Das et al., 2016) used the contrastive
loss function first introduced in (Hadsell et al., 2006). More-
over, the Siamese architecture used as a sub-network a Convo-
lutional Neural Network (CNN). Researchers have also applied
variants of the Siamese architecture in computer vision. For
instance, in (Koch et al., 2015) researchers explored the idea of
using Siamese based architecture in a one-shot learning setting
for image recognition. As mentioned by the researchers one-
shot learning implies that “we may only observe a single exam-
ple of each possible class before predicting a test instance”(Koch
et al., 2015). The strategy adopted in the paper is to train a
model that learns to distinguish between same and different
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pairs for the n categories given in the data. This means that
a testing time the model is evaluated by a verification task
to determine to which category a given test image belongs to
out of all the possible categories that exist. What is differ-
ent from the previous approaches that we mentioned above
is that instead of trying to learn a distance between the out-
puts, the researchers concatenated the feature vector learned
in the sub-network and the pair-wise difference between them
as the final layer of a sub-network that uses CNN-based ap-
proach. Some other challenging task in computer vision such
as person re-identification from multiple camera views have
also used Siamese network-based models such as the work of
(Shen et al., 2017). Yet another domain where Siamese net-
works have been applied is as part of an information system
pipeline in non-factoid question-answering problems such as in
(Tran and Niederée, 2018).

Regardless of the specific problem, all the research efforts
share the challenge of finding a specific sub-network architec-
ture with specific hyperparameters to accurately deter-mine
how different or similar the two inputs are. In our work, we
want to show the potential of such architecture to the prob-
lem of distinguishing accurately between reliable and fraudu-
lent workers. The primary technical challenge that we face here
is the limited set of attributes available.

We can formally define the problem that we want to solve
using the Siamese architecture as follows:

Problem Definition. Given a training set of vector repre-
sentation of pairs of workers < wi, wj > comprising n positive
pairs and m negative pairs, we want to find the sub-network ar-
chitecture with its hyperparameters to determine the reliability
of a new unseen worker wk from a test set. Here positive pairs
refers to pairs of reliable workers and negative pairs refers to
pairs where one worker is not reliable.

To solve the problem, we focus in this work on an ex-
ploration of Feedforward Networks also known as multilayer
perceptrons (MLPs) as the building block of our proposed sub-
network architecture.

Once we have trained a model, testing involves the fol-
lowing procedure: for each unseen vector representation of a
worker of the test set, we select a reliable random worker from
our training set to generate the pair that the trained model
will assess.

For self-containment, we include in the following para-
graphs the definition of MLPs that one can find in (Goodfellow
et al., 2016), in particular, the terminology discussed in Chap-
ter 6. Thus, readers already familiar with MLPs can skip the
following subsection, or those interested in a depth discussion
of the topic should read (Goodfellow et al., 2016).

4.3.1 Feedforward Networks

Feedforward networks also are known as multilayer perceptrons
(MLPs), are learning models whose goal is to approximate some
function f . For instance, for a classifier that aims at learning
if an email is spam or not, y = f(x) maps an input x to a cat-
egory y. A feedforward network defines a mapping y = f(x; θ)
and learns the value of the parameters θ that results in the best

function approximation. These models are called feedforward
because information flows through the function being evalu-
ated from x, through the intermediate computations used to
define f , and finally to the output y. There are no feedback
connections in which outputs of the model are fed back into
itself. These networks are represented by composing together
many different functions. The model is associated with a di-
rected acyclic graph describing how the functions are compose
together. The overall length of the change gives the depth of
the model. People refer to the functions as the layers of the
network. The final layer of a feedforward network is called the
output layer.

These networks are trained in a supervised fashion using la-
beled training data. Training a specific network involves spec-
ifying a loss function that measures the performance on the
training data and an optimizer which the network will use to
update itself based on the data it sees and its loss function
using a specific variant of stochastic gradient descent (SGD).

5 Evaluation

We now demonstrate the applicability/efficiency of our method
in saving costly safeguards while maintaining high quality in
real crowdsourcing tasks. We compare our method against the
baseline in (Liu et al., 2013), to which we refer henceforth as
the ‘Optimal K’ method.

5.1 Data and Crowdsourcing tasks’ Overview

For six different datasets, we designed a crowdsourcing task and
posted a total of 25 jobs on the CrowdFlower crowdsourcing
platform. We chose quite a heterogeneous set of crowdsourcing
tasks to generate a universal set of enhanced worker profiles:

1. Sharpness Image dataset, comprising 192 in-house high-
quality images. In total six jobs were submitted to the
crowd, each job had 48 questions. The crowd was given
five versions of the same picture and were asked to order
them according to their level of sharpness. A total of
184 workers were hired.

2. Definition dataset, crawled from the verbal practice ques-
tions section of the Graduate Record Examination (GRE)
dataset3 2015. 176 questions were assigned to 70 work-
ers over five jobs. The crowd was given multiple-choice
questions, where correct corresponding definitions of words
had to be chosen.

3. Cars dataset, crawled from Heise.de4 in 2011. 125 ques-
tions were assigned to 87 workers over seven jobs. The
crowd was asked to look up missing data for a particular
car model.

4. The open source “Image descriptions” dataset5, compris-
ing 225,000 tuples. 1,320 questions were assigned to 482
workers over three jobs. The workers were shown a large
variety of images with a corresponding word. Their task
was to identify whether the word matched and described
the image.

3http://www.graduateshotline.com/
4http://www.heise.de/autos/neuwagenkatalog
5http://dbgroup.cs.tsinghua.edu.cn/ligl/crowddata/
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5. The open “Semantic relationships between two concepts
dataset”, comprising 3,536 tuples. 50 questions were
assigned to 39 workers over one job. Workers were asked
to judge whether the semantic equivalence in sentences
was correct or not.

6. The open source “Decide whether two English sentences
are related dataset” , comprising 555 tuples. A total of
730 questions were assigned to 404 workers over three
jobs. Given two sentences: a fact and a deduction sen-
tence, the workers had to judge if the deduction sentence
were correct.

Throughout the 25 jobs we ran, a total of 1,266 workers
were hired. While processing the workers’ data, we found that
about 35% (i.e., 445) of workers had worked in more than one
job. After removing duplicate workers by merging their data,
we ended up with 1,006 workers. For evaluation, we split our
database of workers into two datasets: A training dataset was
used to create the enhanced worker profiles (806 workers), and
a test dataset of 200 workers was used for evaluation. For
the test dataset, we created five datasets with different per-
centages of spammers and reliable workers in order to observe
their impact on the overall accuracy of our method. To do so,
we selected at random from a large pool of workers spammers
and no-spammers until we reached the desired ratio. Following
our problem definition in Section 3, reliable workers are those
workers achieving an accuracy rate higher than 75%.

• Spammers75 (S75): 75:25 ratio of spammers/reliable
workers.

• Spammers66 (S66): 66:34 ratio of spammers/reliable
workers.

• Balanced (B): 50:50 ratio of spammers/reliable workers.
• Reliable66 (R66): 34:66 ratio of spammers/reliable work-

ers.
• Reliable75 (R75): 25:75 ratio of spammers/reliable work-

ers.

5.2 Populating the worker profiles database

To generate the set of enhanced worker profiles, we used the
training dataset comprising 806 workers and used the following
attributes as observations: Channel, Country, Started_at, and
Trust.

5.2.1 CFM-generated enhanced worker profiles

In total, 16,199 enhanced worker profiles of different granular-
ities were generated. Namely, 47 single observation pro-files
(in total we had 50 different observations, but for three trust
values, no profiles were generated since the values never oc-
curred given the hypothesis). Moreover, parallel combinations
generated the following combined-observation profiles: 728 2-
Set Observation profiles, 4,672 3-Set observation profiles, and
10,752 4-Set observation profiles.

Single-Observation Profiles: Figures 7–10 plot CF values
for single observation profiles. In Figure 7, highest quality work
tends to be done around 12 GMT, i.e., CF (reliableworker|12)→
0.35. Further analysis uncovered that this work was mostly
done by German workers, probably during lunch breaks. In
Figure 8, workers hired from Amazon Mechanical Turk seem

more reliable than those from gifthunterclub:

CF (reliableworker|gifthunterclub)→ −0.27

compare to CF (reliableworker|AMT )→ 0.6
German workers show a high confirming profile:

CF (reliableworker|GER)→ 0.58,

where workers from Pakistan have the lowest disconfirming pro-
file: CF (reliableworker|PAK)→ −0.77 (Figure 9). Lastly, in
Figure 10 it comes as no surprise that workers with highest
trust value 1.0 show confirming profiles:

CF (reliableworker|1.0)→ 0.5

while those having the lowest trust value of 0.4 have highest
disconfirming profiles:

CF (reliableworker|0.4)→ −0.65

Combined-Observation Profiles: Below we show the top
generated confirming/disconfirming 3-Set and 4-set observa-
tion profiles. The hours encoded in the rules for the Started_at
attribute have been converted from GMT to the local time of
the corresponding country within the same profile. For pro-
files without a corresponding country, the time is indicated in
GMT format. The decimal numbers are trust values; the whole
numbers refer to Started_at observation.

Top Ten Confirming 3-SET Observation Profiles:
1. CF (reliable worker|amt,DEU, 1.0)→ 0.921
2. CF (reliable worker|instagc,DEU, 1.0)→ 0.899
3. CF (reliable worker|amt,DEU, 16)→ 0.896
4. CF (reliable worker|amt, 14, 1.0)→ 0.876
5. CF (reliable worker|amt,DEU, 0.9)→ 0.873
6. CF (reliable worker|DEU, 16, 1.0)→ 0.869
7. CF (reliable worker|instagc,DEU, 16)→ 0.868
8. CF (reliable worker|amt,GBR, 1.0)→ 0.864
9. CF (reliable worker|amt,DEU, 0.8)→ 0.858
10. CF (reliable worker|amt, ITA, 1.0)→ 0.856
Top Ten Disconfirming 3-SET Observation Profiles:
1. CF (reliable worker|PAK, 16, 0.4)→ −0.943
2. CF (reliable worker|PAK, 19, 0.4)→ −0.942
3. CF (reliable worker|gifthunter, PAK, 0.4)→ −0.941
4. CF (reliable worker|neodev, PAK, 0.4)→ −0.935
5. CF (reliable worker|PAK, 15, 0.4)→ −0.935
6. CF (reliable worker|clixsense, PAK, 0.4)→ −0.928
7. CF (reliable worker|elite, PAK, 0.4)→ −0.928
8. CF (reliable worker|PAK, 13, 0.4)→ −0.925
9. CF (reliable worker|PAK, 18, 0.4)→ −0.92
10. CF (reliable worker|PAK, 21, 0.4)→ −0.892
Top Ten Confirming 4-SET Observation Profiles:
1. CF (reliable worker|amt,DEU, 14, 1.0)→ 0.949
2. CF (reliable worker|instagc,DEU, 14, 1.0)→ 0.935
3. CF (reliable worker|amt,DEU, 15, 1.0)→ 0.929
4. CF (reliable worker|amt,DEU, 16, 1.0)→ 0.923
5. CF (reliable worker|amt,DEU, 12, 0.9)→ 0.918
6. CF (reliable worker|Prodege,DEU, 12, 1.0)→ 0.918
7. CF (reliable worker|amt,GBR, 12, 1.0)→ 0.9123
8. CF (reliable worker|instagc,DEU, 15, 1.0)→ 0.910
9. CF (reliable worker|amt,DEU, 12, 0.8)→ 0.908
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10. CF (reliable worker|amt, ITA, 12, 1.0)→ 0.907
Top Ten Disconfirming 4-SET Observation Profiles:
1. CF (reliable worker|gifthunter, PAK, 16, 0.4)→ −0.959
2. CF (reliable worker|gifthunter, PAK, 19, 0.4)→ −0.958
3. CF (reliable worker|neodev, PAK, 16, 0.4)→ −0.955
4. CF (reliable worker|neodev, PAK, 19, 0.4)→ −0.954
5. CF (reliable worker|gifthunter, PAK, 15, 0.4)→ −0.953
6. CF (reliable worker|clixsense, PAK, 16, 0.4)→ −0.95
7. CF (reliable worker|elite, PAK, 16, 0.4)→ −0.95
8. CF (reliable worker|clixsense, PAK, 19, 0.4)→ −0.949
9. CF (reliable worker|elite, PAK, 19, 0.4)→ −0.949
10. CF (reliable worker|neodev, PAK, 15, 0.4)→ −0.948

Figure 7: Single Started_at CF Rules

Figure 8: Single Started_at CF Rules

Figure 9: Single Country CF Rules

The combined-observation profiles show similar insights to
the single-observation profiles: Work done at 12 GMT by Ger-
man workers showing trust values higher than 0.8 and hired

Figure 10: Single Trust CF Rules

from the AMT channel, have high belief values in the hypoth-
esis: a low-risk profile. In contrast, work done at 11 GMT
by Pakistani workers showing trust values lower than 0.7 and
hired from the gifthunterclub channel, tend to have high dis-
belief values, a high-risk profile.

5.2.2 BN-generated enhanced worker profiles

In total, 1,454 enhanced worker profiles of different granular-
ities were generated, in particular, 47 single observation pro-
files. For the Bayesian belief network, these single observation
profiles are nothing but prior distributions, i.e., world probabil-
ities that need to be estimated. For the country attribute, we
turned to the population statistics of the world6 to estimate the
countries’ prior estimations. The other priors, namely Chan-
nel, Started_at and Trust, proved difficult to estimate from
the data we had. This is one of BN’s drawbacks: biases in
estimations may easily be introduced.

Moreover, unlike CFM’s computation of more complex pro-
files by parallel combination, BN repeatedly needs to scan the
data for generating these profiles. The following combined-
observation profiles were deduced: 1169 2-Set Observation pro-
files, 213 3-Set observation profiles, and 25 4-Set observation
profiles. Compared to the CF database of profiles, the BN
database is significantly smaller. This comes as no surprise
since BN computes conditional probabilities based on actual
occurrences of combined-observation: unseen combined obser-
vations are not generated. Single-observation profiles for the
BN are prior probabilities. For the country observation, we
quickly computed it based on real-world data, with P (DEU)
= 0.011. Other priors were challenging to get and were ac-
cordingly estimated from the dataset. In other words, we used
biased empirical priors calculated using the training data. The
combined-observation profiles for the BN are on the other hand
simple conditional probabilities (see Definition 4).

5.3 Evaluating the Gold Par

Using our test dataset of 200 workers for evaluation, the rel-
atively small database of enhanced worker profiles on average
profiled 96.5% of new incoming workers (i.e., 193 workers fit at
least one of the enhanced worker profiles) when using the CF

6http://www.worldometers.info/world-population/population-
by-country/
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database, and 94% of new incoming workers (i.e. 188 workers)
when using BN.

Next, we evaluate our method with both types of profile
mapping (optimistic and pessimistic) and compare it against
optimal k (see Section 2), in terms of overall quality, effec-
tiveness of the algorithm, number of gold questions used, i.e.
incurred costs, fraud detection failure rates, and discrimination
against reliable workers.

5.3.1 Method’s Effectiveness and the Gold Par

We evaluate two trading-off parameters: 1) the method’s ef-
fectiveness, that is, how effective the method is in including
reliable workers, while simultaneously removing spammers. 2)
The gold par percentage that is the overall percentage of gold
questions posed in the crowdsourcing task. The more questions
are posed, the more information the method gets, which directs
it to the correct decision. Nevertheless, more gold questions,
incur higher costs, e.g., BN-pessimistic method is overall the
most effective (90.04%), yet comes at the highest cost of gold
questions usage (19.31%).

In general, all methods seem to be more effective on datasets
with higher spammers’ percentage, with effectiveness values de-
creasing as more reliable workers are present (see Figure 11(a)),
i.e., the discrimination rate against reliable workers is high, as
can be seen in Figure 11(d). However, our CF-based and BN-
based methods, whether utilizing the pessimistic or optimistic
mapping, are more effective with datasets having higher spam-
mers’ percentage: S75 and S66, while optimal k seems more
effective with datasets including more reliable workers: R66
and R75 (see Figure 11(a)). This implies that our method can
reliably detect spammers, while optimal k is better at detect-
ing reliable workers. Whereas the pessimistic methods have the
highest percentage of gold par cost, and thus the highest cost.
The CF-based optimistic method seems to score the trade-off
balance by having the lowest percentage of gold par, and thus
the lowest cost (see Figure 11 (a)), while still being as effec-
tive as Optimal K for S75, S66 and B datasets. For our test
dataset, we have a total of 6631 tasks. If we, for in-stance, com-
pute 5 cents per question, then on average for the CF-based
optimistic method, 10.8% gold par costs around 36$, while op-
timal k costs 42.5$ at 12.8% gold questions. This means a cost
reduction of about 18%. More gold questions should be asked
in datasets having higher levels of spammers since more work-
ers will be mapped to high-risk profiles, which consequently
leads to a higher percentage of gold par usage. Surprisingly,
we experienced a relatively similar percentage of gold par re-
gardless of the composition of the dataset. Looking into the
data, we attribute that to the inherent size of our tasks, i.e.,
most are relatively small (∼ 20 questions per job).

5.3.2 Failure Rate

Next, we evaluated the failure rate of the methods in over-
seeing spammers and letting them through to work on the
tasks (i.e., the False Positives). The lower the failure rate,
the better. Figure 11(c), supports the previous results, where
optimal k has the worst failure rate. Naturally, the failure rate

is more pronounced in S75 and S66 and becomes less noticeable
in R66 and R75 due to their inherent nature of having fewer
spammers. On the other hand our methods have lower failure
rates, which again adheres to their effectivity when handling
datasets with high percentages of spammers, e.g., for dataset
S66, the following failure rates were experienced: Optimal K
had 24.69%, CF-based methods had on average 16.3%, and
BN-based methods had on average 5% failure rate. Here the
BN-based methods have lower failure rates than the CF-based
methods, since they utilize more gold questions and are thus
more informed.

5.3.3 Reliable Worker Pool and Discrimination Rate

After looking at failure rates, we test the second parameter im-
pacting the methods’ effectiveness: discrimination rates against
reliable workers (i.e., the False Negatives). The lower the dis-
crimination rate, the better. Optimal k shows the lowest dis-
crimination rates. Naturally, this becomes more pronounced
for the R66 and R75 datasets and is alike for all the other
methods. The CF-based and BN-based optimistic methods
are slightly more discriminating than their pessimistic coun-
terparts, which would indicate, that perhaps the small number
of gold questions that were given to the reliable workers might
have been inherently difficult. This is also attributed to the
inherent design of our methods, which enforces a higher qual-
ity threshold on workers with low-risk profiles. Looking at the
overall actual number of reliable workers hired from the avail-
able pool (see Figure 11 (e)), backs up the discrimination rates
in Figure 11(d).

5.3.4 Overall Resulting Quality

Regardless of the discrimination rates, or the effectiveness of
the method, for a requestor or a data scientist, the ultimate
quality measure for any safeguard is the resulting quality plus
the costs it incurs. We can see that throughout our experi-
ments that indeed all the methods achieved about the same
quality level as illustrated in Figure 11(f); although it came as
a pleasant surprise that despite needing less gold questions the
CF-based optimistic method achieves even slightly better qual-
ity levels. For example for the dataset: B, the CF-based pes-
simistic method achieves 90%, the CF-based optimistic method
achieved 89%, while optimal k achieves only 87% quality rate.
Measuring the standard error for the resulting overall quality
yielded a small rate of 0.0007. Posing crowdsourcing tasks of
bigger size might reflect savings in gold questions even bet-
ter, yet most of our crowdsourcing tasks had only 20 questions
(thus 5% gold questions vs. 10% gold questions amounts to
only one more gold question to be used).

5.4 Evaluating the Siamese Architecture

In this section, we provide details of the experimental setting
we devised to evaluate the different implementations of the
Siamese architecture. Firstly, we carry out a preprocessing
step on each of the five datasets in order to attain the Siamese
network’s two input, which should be in a vector form of the
attributes that we have previously discussed. Out of the four
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Figure 11: Evaluating Optimal k vs. CF-based/BN-based (Pessimistic and Optimistic) methods on S75, S66, B, R66, and R75

available attributes, three of them is categorical, and one is nu-
merical. Accordingly, for each of the categorical variables that
can take on K different values, we represent each data point
with aK-dimensional vector x in which one element of x equals
1 and all the remaining elements equal zero. Secondly, in order
to derive the hyperparameters, e.g., number of layers, num-
ber of neurons in each layer, regularization to avoid overfitting
for the different models, we reserve part of the training data
for validation purposes. For all the datasets, we reserved 20%
of the original training data as validation data. The models
evaluated here used hyperas7 to search for the optimal hyper-
parameters mentioned above.

Next, with the remaining training data, we generated the
pairs which are to be used as inputs for the Siamese networks
that we test. Thus, we proceeded as follows: for each reliable
worker, we generate positive pairs and negative pairs. A posi-
tive pair comprises of two reliable workers and, a negative pair
comprises of a reliable worker and a non-reliable worker. Fol-
lowing one of the empirical findings, which states that having
many examples, e.g., above 5000 (Goodfellow et al., 2016) can
lead to robust deep learning models, we generated all possible
positive pairs and all possible negative pairs for each dataset.
In Table 1, we can indeed see that the number of generated
samples seems to be enough for our particular setting. Our
later experiments, however, would prove otherwise (see Section
5.4.1).

7https://github.com/maxpumperla/hyperas

Table 1: Statistics of the Training Data

Dataset Positive pairs Negative pairs

Spammers75 (S75) 87,912 103,059
Spammers66 (S66) 78,680 102,003
Balanced (B) 75,350 101,475
Reliable66 (R66) 68,382 100,084
Reliable75 (R75) 56,882 96,795

5.4.1 Results of the Siamese Experiments

We evaluate three models of the Siamese architecture that use
MLPs as sub-network. The main difference between the mod-
els is how, at the final layer, the model processes the internal
representation of the inputs to assess the differences between
reliable and fraudulent workers. Following what we found in
the literature discussed in Section 4.3, we test the Manhattan
distance, the Euclidean distance and a model that concatenates
the internal representations before making the final prediction.
We will refer to each model as Siamese Euclidean, Siamese
Manhattan, and Siamese Concatenation respectively. For each
model and each dataset we perform a grid search of the specific
architecture (number of layers, neurons per layer, optimizer),
and two regularization strategies dropout and early stopping
(Hinton et al., 2012). In Figure 12 we show the results of the
performance of the models measured in the percentage of cor-
rectly identified reliable workers and spammers.
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Figure 12: Percentage of correctly identified reliable workers and
spammers

In general, the three models’ performance in each dataset
is somewhat stable. In other words, the models generalize
equally well due to a large number of available positive and
negative pairs that they use to learn. To our surprise, we
can observe that none of the Siamese architectures outperform
our probabilistic-based approaches. We can observe that the
Siamese Concatenation model outperforms in each data set all
the other Siamese architectures by a small but significant mar-
gin. To better understand the differences between the models,
we analyze the false positives and false negatives. In Figure
13 we can observe the failure rates against spammers (false
positives). The Siamese Euclidean seems to be better to spot
reliable workers. However, this difference vanishes with the
datasets that have more spammers. We can also observe that
the Siamese Manhattan seems to be better to detect spammers.
We can see for instance that in the dataset with more spam-
mers (S75) it achieves the lowest score (zero), e.g., it catches
all the spammers. This comes with a high price: it has the
highest discrimination ratio (false negatives see Figure 14).

Figure 13: Failure rates in detecting spammers.

Moreover, the behavior of the Siamese Euclidean is the op-
posite when we look at Figure 14 concerning false negatives.
We can see also that the model Siamese Concatenation behaves
better than the other two models in all the datasets except the
balanced dataset. In the latter, it gives comparable results
concerning the Siamese Manhattan. These observations lead
us to the conclusion that an ensemble of the models could lead
to better performance. We show in Figure 15 the accuracy
of these ensembles, where Siamese Concat+Euclidean refers to
the model that uses the concatenation model and the Euclidean

Figure 14: Discrimination rates against reliable workers.

distance. Siamese Concat+Manh refers to the model that uses
the concatenation model and the Manhattan distance, whereas
Siamese Concat+Both refers to the model that uses the Con-
catenation with Euclidean and the Manhattan distance. The
gains that we can observe confirms our general finding after
experimenting with these models: there is no latent represen-
tation that any of the models can build using the four attributes
available. In summary, these models show some potential and
an intuitive interpretation, but without more attributes, they
cannot improve on the results obtained through the Certainty
factor model or Belief networks.

Figure 15: Percentage of correctly identified reliable workers and
spammers

We also measure the impact of our best model regarding
the training data available. To do so, we started with 5000
examples given the empirical observations of Goodfellow et al.,
2016. If with 5000 our model was not able to achieve the results
obtained with all the data, then we started to sample 10%,
50% and 75% of the rest of the available training data. Results
vary depending on the dataset. For instance, the model trained
on the S75 dataset achieved the best results using only 5000
samples. For the S66 dataset, we needed 10% of the data.
For the balanced dataset, we needed 50% of the data. For
the last two datasets when we have more reliable workers than
spammers we needed up 75% of the data. In summary, the
fewer spammers the models are aware of, the less effective they
are and thus need more training data to reach the best results.
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6 Conclusion

We designed a method for using individualized numbers of
gold questions that leverages the limited amount of informa-
tion known about short-term hired anonymous workers. Sur-
prisingly, with as little as four publicly available attributes,
we were already able to create meaningfully enhanced worker
profiles. The generated enhanced profiles encode the risk asso-
ciated with each worker regarding a particular task by exposing
relative a-priori belief /disbelief measures or probabilities. In a
nutshell, the higher the belief value or probability of a worker’s
reliability, the lower the risk, and the lesser the number of gold
questions to be used. Moreover, the higher the disbelief value
or, the lower the probability of a worker’s reliability, the higher
the risk, and the more gold questions need to be used. For gen-
erating this profile database, we experimented with certainty
factor models and Bayesian belief networks. Interestingly, the
Bayesian belief network did not outperform simple certainty
factors. This might be caused by the inherently small amount
of training data, in addition to biases introduced while estimat-
ing priors. We also designed a Siamese based neural network
architecture in an attempt to find a latent representation to
differentiate between reliable and fraudulent workers. To our
surprise, none of the models that we implemented could outper-
form our previously proposed probabilistic-based approaches.
Our results indicate that neural network models are incapable
of learning a latent representation likely due to the limited
number of attributes available. In short, our findings indicate
Certainty factors fit better the problem addressed in this pa-
per. We illustrated the applicability of our method on practical
crowdsourcing tasks and demonstrated its potential in saving
money while maintaining high-quality results. We tested our
method against five different datasets with different composi-
tions of spammers and reliable workers. Our method works
best when there are more spammers, and always achieved at
least comparable quality results to the ‘optimal k’ baseline.
Moreover, our CF-based optimistic method achieved higher
quality rates at a lower number of gold questions: only 12.8%
gold questions were used in contrast to 14.8% with optimal k.
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